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Abstract

The perception-based theory of probabilistic reasoning which is outlined in this paper is not
in the traditional spirit. Its principal aim is to lay the groundwork for a radical enlargement of
the role of natural languages in probability theory and its applications, especially in the realm
of decision analysis. To this end, probability theory is generalized by adding to the theory the
capability to operate on perception-based information, e.g., “Usually Robert returns from work
at about 6 p.m.” or “It is very unlikely that there will be a signi*cant increase in the price of oil
in the near future”. A key idea on which perception-based theory is based is that the meaning
of a proposition, p, which describes a perception, may be expressed as a generalized constraint
of the form X isr R, where X is the constrained variable, R is the constraining relation and isr
is a copula in which r is a discrete variable whose value de*nes the way in which R constrains
X . In the theory, generalized constraints serve to de*ne imprecise probabilities, utilities and
other constructs, and generalized constraint propagation is employed as a mechanism for reason-
ing with imprecise probabilities as well as for computation with perception-based information.
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1. Introduction

Interest in probability theory has grown markedly during the past decade. Underlying
this growth is the ballistic ascent in the importance of information technology. A
related cause is the concerted drive toward automation of decision-making in a wide
variety of *elds ranging from assessment of creditworthiness, biometric authentication,
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and fraud detection to stock market forecasting, and management of uncertainty in
knowledge-based systems. Probabilistic reasoning plays a key role in these and related
applications.
A side eFect of the growth of interest in probability theory is the widening realization

that most real-world probabilities are far from being precisely known or measurable
numbers. Actually, reasoning with imprecise probabilities has a long history (Walley,
1991) but the issue is of much greater importance today than it was in the past, largely
because the vast increase in the computational power of information processing systems
makes it practicable to compute with imprecise probabilities—to perform computations
which are far more complex and less amenable to precise analysis than computations
involving precise probabilities.
Transition from precise probabilities to imprecise probabilities in probability theory is

a form of generalization and as such it enhances the ability of probability theory to deal
with real-world problems. The question is: Is this mode of generalization suJcient? Is
there a need for additional modes of generalization? In what follows, I argue that the
answers to these questions are, respectively, No and Yes. In essence, my thesis is that
what is needed is a move from imprecise probabilities to perception-based probability
theory—a theory in which perceptions and their descriptions in a natural language play
a pivotal role.
The perception-based theory of probabilistic reasoning which is outlined in the fol-

lowing is not in the traditional spirit. Its principal aim is to lay the groundwork for
a radical enlargement in the role of natural languages in probability theory and its
applications, especially in the realm of decision analysis.
For convenience, let PT denote standard probability theory of the kind found in

textbooks and taught in courses. What is not in dispute is that standard probability
theory provides a vast array of concepts and techniques which are highly eFective in
dealing with a wide variety of problems in which the available information is lacking
in certainty. But alongside such problems we see many very simple problems for which
PT oFers no solutions. Here are a few typical examples:

1. What is the probability that my tax return will be audited?
2. What is the probability that my car may be stolen?
3. How long does it take to get from the hotel to the airport by taxi?
4. Usually Robert returns from work at about 6 p.m. What is the probability that he
is home at 6:30 p.m.?

5. A box contains about 20 balls of various sizes. A few are small and several are
large. What is the probability that a ball drawn at random is neither large nor small?

Another class of simple problems which PT cannot handle relates to commonsense
reasoning (Kuipers, 1994; Fikes and Nilsson, 1971; Smithson, 1989; Shen and Leitch,
1992; Novak et al., 1992; Krause and Clark, 1993) exempli*ed by

6. Most young men are healthy; Robert is young. What can be said about Robert’s
health?
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7. Most young men are healthy; it is likely that Robert is young. What can be said
about Robert’s health?

8. Slimness is attractive; Cindy is slim. What can be said about Cindy’s attractive-
ness?

Questions of this kind are routinely faced and answered by humans. The answers,
however, are not numbers; they are linguistic descriptions of fuzzy perceptions of
probabilities, e.g., not very high, quite unlikely, about 0.8, etc. Such answers cannot
be arrived at through the use of standard probability theory. This assertion may ap-
pear to be in contradiction with the existence of a voluminous literature on imprecise
probabilities (Walley, 1991). In may view, this is not the case.
What are the sources of diJculty in using PT? In Problems 1 and 2, the diJculty is

rooted in the basic property of conditional probabilities, namely, given P(X ), all that
can be said about P(X |Y ) is that its value is between 0 and 1, assuming that Y is not
contained in X or its complement. Thus, if I start with the knowledge that 1% of tax
returns are audited, it tells me nothing about the probability that my tax return will
be audited. The same holds true when I add more detailed information about myself,
e.g., my profession, income, age, place of residence, etc. The Internal Revenue Service
may be able to tell me what fraction of returns in a particular category are audited,
but all that can be said about the probability that my return will be audited is that it
is between 0 and 1. The tax-return-audit example raises some non-trivial issues which
are analyzed in depth in a paper by Nguyen et al. (1999).
A closely related problem which does not involve probabilities is the following.
Consider a function, y=f(x), de*ned on an interval, say [0; 10], which takes values

in the interval [0; 1]. Suppose that I am given the average value, a, of f over [0; 10],
and am asked: What is the value of f at x=3? Clearly, all I can say is that the value
is between 0 and 1.
Next, assume that I am given the average value of f over the interval [2; 4], and

am asked the same question. Again, all I can say is that the value is between 0 and
1. As the length of the interval decreases, the answer remains the same so long as the
interval contains the point x=3 and its length is not zero. As in the previous example,
additional information does not improve my ability to estimate f(3).
The reason why this conclusion appears to be somewhat counterintuitive is that

usually there is a tacit assumption that f is a smooth function. In this case, in the
limit the average value will converge to f(3). Note that the answer depends on the
way in which smoothness is de*ned.
In Problem 3, the diJculty is that we are dealing with a time series drawn from a

nonstationary process. When I pose the question to a hotel clerk, he=she may tell me
that it would take approximately 20–25min. In giving this answer, the clerk may take
into consideration that it is raining lightly and that as a result it would take a little
longer than usual to get to the airport. PT does not have the capability to operate on
the perception-based information that “it is raining lightly” and factor-in its eFect on
the time of travel to the airport.
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In problems 4–8, the diJculty is more fundamental. Speci*cally, the problem
is that PT—as stated above—has no capability to operate on perceptions described
in a natural language, e.g., “usually Robert returns from work at about 6 p.m.”,
or “the box contains several large balls” or “most young men are healthy”. This
is a basic shortcoming that will be discussed in greater detail at a later
point.
What we see is that standard probability theory has many strengths and many lim-

itations. The limitations of standard probability theory fall into several categories. To
see them in a broad perspective, what has to be considered is that a basic concept
which is immanent in human cognition is that of partiality. Thus, we accept the reality
of partial certainty, partial truth, partial precision, partial possibility, partial knowledge,
partial understanding, partial belief, partial solution and partial capability, whatever it
may be. Viewed through the prism of partiality, probability theory is, in essence, a
theory of partial certainty and random behavior. What it does not address—at least
not explicitly—is partial truth, partial precision and partial possibility—facets which
are distinct from partial certainty and fall within the province of fuzzy logic (FL)
(Zadeh, 1978; Dubois and Prade, 1988; Novak, 1991; Klir and Folger, 1988; Reghis
and Roventa, 1998; Klir and Yuan, 1995; Grabisch et al., 1995). This observation ex-
plains why PT and FL are, for the most part, complementary rather than competitive
(Zadeh, 1995; Krause and Clark, 1993; Thomas, 1995).
A simple example will illustrate the point. Suppose that Robert is three-quarters

German and one-quarter French. If he were characterized as German, the characteri-
zation would be imprecise but not uncertain. Equivalently, if Robert stated that he is
German, his statement would be partially true; more speci*cally, its truth value would
be 0.75. Again, 0.75 has no relation to probability.
Within probability theory, the basic concepts on which PT rests do not reUect the

reality of partiality because probability theory is based on two-valued Aristotelian
logic. Thus, in PT, a process is random or not random; a time series is station-
ary or not stationary; an event happens or does not happen; events A and B are
either independent or not independent; and so on. The denial of partiality of truth
and possibility has the eFect of seriously restricting the ability of probability the-
ory to deal with those problems in which truth and possibility are matters of
degree.
A case in point is the concept of an event. A recent Associated Press article carried

the headline, “Balding on Top Tied to Heart Problems; Risk of disease is 36 percent
higher, a study *nds”. Now it is evident that both “balding on top”, and “heart prob-
lems”, are matters of degree or, more concretely, are fuzzy events, as de*ned in Zadeh
(1968), Kruse and Meyer (1987) and Wang and Klir (1992). Such events are the norm
rather than exception in real-world settings. And yet, in PT the basic concept of condi-
tional probability of an event B given an event A is not de*ned when A and B are fuzzy
events.
Another basic, and perhaps more serious, limitation is rooted in the fact that, in

general, our assessment of probabilities is based on information which is a mixture of
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Fig. 1. f-Granularity (fuzzy granularity).

Fig. 2. Crisp and fuzzy granulation of Age.

measurements and perceptions (Vallee, 1995; Barsalou, 1999). ReUecting the bounded
human ability to resolve detail and store information, perceptions are intrinsically
imprecise. More speci*cally, perceptions are f-granular (Zadeh, 1979, 1997), that is:
(a) perceptions are fuzzy in the sense that perceived values of variables are not sharply
de*ned and (b) perceptions are granular in the sense that perceived values of variables
are grouped into granules, with a granule being a clump of points drawn together by
indistinguishability, similarity, proximity or functionality (Fig. 1). For example, the
fuzzy granules of the variable Age might be young, middle-aged and old (Fig. 2).
Similarly, the fuzzy granules of the variable Probability might be likely, not likely,
very unlikely, very likely, etc.
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Fig. 3. Coarse description of a function by a collection of linguistic rules. Linguistic representation is
perception-based.

Perceptions are described by propositions expressed in a natural language. For
example

• Dana is young,
• it is a warm day,
• it is likely to rain in the evening,
• the economy is improving,
• a box contains several large balls, most of which are black.
An important class of perceptions relates to mathematical constructs such as func-

tions, relations and counts. For example, a function such as shown in Fig. 3 may
be described in words by a collection of linguistic rules (Zadeh, 1973, 1975, 1996).
In particular, a probability distribution, e.g., discrete-valued probability distribution of
Carol’s age, P∗, may be described in words as

Prob{Carol is young} is low;
Prob{Carol is middle-aged} is high;
Prob{Carol is old} is low

or as a linguistic rule-set

if Age is young then P∗ is low;
if Age is middle-aged then P∗ is high;
if Age is old then P∗ is low:

For the latter representation, using the concept of a fuzzy graph (Zadeh, 1996, 1997),
which will be discussed later, the probability distribution of Carol’s age may be
represented as a fuzzy graph and written as

P∗=young× low +middle-aged× high+ old× low
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Fig. 4. Cartesian granulation. Granulation of X and Y induces granulation of (X; Y ).

Fig. 5. Structure of information: measurement-based, perception-based and pseudo-measurement-based
information.

which, as shown in Fig. 4, should be interpreted as a disjunction of cartesian products
of linguistic values of Age and Probability (Zadeh, 1997; Pedrycz and Gomide, 1998).
An important observation is in order. If I were asked to estimate Carol’s age, it would

be unrealistic to expect that I would come up with a numerical probability distribution.
But I would be able to describe my perception of the probability distribution of Carol’s
age in a natural language in which Age and Probability are represented—as described
above—as linguistic, that is, granular variables (Zadeh, 1973, 1975, 1996, 1997).
Information which is conveyed by propositions drawn from a natural language

will be said to be perception-based (Fig. 5). In my view, the most important
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Fig. 6. f-Generalization (fuzzi*cation). Fuzzi*cation is a mode of generalization from crisp concepts to fuzzy
concepts.

shortcoming of standard probability theory is that it does not have the capability to
process perception-based information. It does not have this capability principally be-
cause there is no mechanism in PT for (a) representing the meaning of perceptions
and (b) computing and reasoning with representations of meaning.
To add this capability to standard probability theory, three stages of generalization

are required.
The *rst stage is referred to as f-generalization (Zadeh, 1997). In this mode of

generalization, a point or a set is replaced by a fuzzy set. f-generalization of standard
probability theory, PT, leads to a generalized probability theory which will be denoted
as PT+. In relation to PT, PT+ has the capability to deal with

1. fuzzy numbers, quanti*ers and probabilities, e.g., about 0.7, most, not very likely,
2. fuzzy events, e.g., warm day,
3. fuzzy relations, e.g., much larger than,
4. fuzzy truths and fuzzy possibilities, e.g., very true, quite possible.

In addition, PT+ has the potential—as yet largely unrealized—to fuzzify such basic
concepts as independence, stationarity and causality. A move in this direction would
be a signi*cant paradigm shift in probability theory.
The second stage is referred to as f.g-generalization (fuzzy granulation) (Zadeh,

1997). In this mode of generalization, a point or a set is replaced by a granulated
fuzzy set (Fig. 6). For example, a function, f, is replaced by its fuzzy graph, f∗

(Fig. 7). f.g-generalization of PT leads to a generalized probability theory denoted as
PT++.
PT++ adds to PT+ further capabilities which derive from the use of granulation.

They are, mainly

1. linguistic (granular) variables,
2. linguistic (granular) functions and relations,
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Fig. 7. Fuzzy graph of a function. A fuzzy graph is a generalization of the concept of a graph of a function.

Fig. 8. Representation of most. Crisp, fuzzy and f-granular.

3. fuzzy rule-sets and fuzzy graphs,
4. granular goals and constraints,
5. granular probability distributions.

As a simple example, representation of the membership function of the fuzzy quanti*er
most (Zadeh, 1983) in PT, PT+ and PT++ is shown in Fig. 8.
The third stage is referred to a p-generalization (perceptualization). In this mode of

generalization, what is added to PT++ is the capability to process perception-based
information through the use of the computational theory of perceptions (CTP) (Zadeh,
1999, 2000). p-generalization of PT leads to what will be referred to as perception-based
probability theory (PTP).
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Fig. 9. Countertraditional conversion of measurements into perceptions. Traditionally, perceptions are
converted into measurements.

The capability of PTP to process perception-based information has an important im-
plication. Speci*cally, it opens the door to a major enlargement of the role of natural
languages in probability theory. As a simple illustration, instead of describing a prob-
ability distribution, P, analytically or numerically, as we normally do, P could be
interpreted as a perception and described as a collection of propositions expressed in
a natural language. A special case of such description is the widely used technique
of describing a function via a collection of linguistic if–then rules (Zadeh, 1996). For
example, the function shown in Fig. 7 may be described coarsely by the rule-set

f: if X is small then Y is small ;
if X is medium then Y is large;
if X is large then Y is small ;

with the understanding that the coarseness of granulation is a matter of choice.
In probability theory, as in other *elds of science, it is a long-standing tradition

to deal with perceptions by converting them into measurements. PTp does not put
this tradition aside. Rather, it adds to PT a countertraditional capability to convert
measurements into perceptions, or to deal with perceptions directly, when conver-
sion of perceptions into measurements is infeasible, unrealistic or counterproductive
(Fig. 9).
There are three important points that are in need of clari*cation. First, when we

allude to an enlarged role for natural languages in probability theory, what we have
in mind is not a commonly used natural language but a subset which will be referred
to as a precisiated natural language (PNL). In essence, PNL is a descriptive language
which is intended to serve as a basis for representing the meaning of perceptions in a
way that lends itself to computation. As will be seen later, PNL is a subset of a natural
language which is equipped with constraint-centered semantics and is translatable into
what is referred to as the generalized constraint language (GCL). At this point, it will
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suJce to observe that the descriptive power of PNL is much higher than that of the
subset of a natural language which is translatable into predicate logic.
The second point is that in moving from measurements to perceptions, we move

in the direction of lesser precision. The underlying rationale for this move is that
precision carries a cost and that, in general, in any given situation there is a tolerance
for imprecision that can be exploited to achieve tractability, robustness, lower cost and
better rapport with reality.
The third point is that perceptions are more general than measurements and PTp

is more general that PT. ReUecting its greater generality, PTp has a more complex
mathematical structure than PT and is computationally more intensive. Thus, to exploit
the capabilities of PT, it is necessary to have the capability to perform large volumes
of computation at a low level of precision.
Perception-based probability theory goes far beyond standard probability theory both

in spirit and in content. Full development of PTp will be a long and tortuous process.
In this perspective, my paper should be viewed as a sign pointing in a direction that
departs from the deep-seated tradition of according more respect to numbers than to
words.
Basically, perception-based probability theory may be regarded as the sum of stan-

dard probability theory and the computational theory of perceptions. The principal
components of the computational theory of perceptions are (a) meaning representation
and (b) reasoning. These components of CTP are discussed in the following sections.

2. The basics of perception-based probability theory; the concept of a generalized
constraint

As was stated already, perception-based probability theory may be viewed as a
p-generalization of standard probability theory. In the main, this generalization adds
to PT the capability to operate on perception-based information through the use of the
computational theory of perceptions. What follows is an informal precis of some of
the basic concepts which underlie this theory.
To be able to compute and reason with perceptions, it is necessary to have a means

of representing their meaning in a form that lends itself to computation. In CTP,
this is done through the use of what is called constraint-centered semantics of natural
languages (CSNL) (Zadeh, 1999).
A concept which plays a key role in CSNL is that of a generalized constraint (Zadeh,

1986). Introduction of this concept is motivated by the fact that conventional crisp
constraints of the form X ∈C, where X is a variable and C is a set, are insuJcient to
represent the meaning of perceptions.
A generalized constraint is, in eFect, a family of constraints. An unconditional con-

straint on a variable X is represented as

X isr R; (2.1)
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Fig. 10. Membership function of young (context-dependent). Two modes of precisiation.

where R is the constraining relation and isr, pronounced as ezar, is a variable copula
in which the discrete-valued variable r de*nes the way in which R constrains X .
The principal constraints are the following:

r := equality constraint; X =R
r : blank possibilistic constraint; X is R; R is the possibility distribution of X

(Zadeh; 1978; Dubois and Prade; 1988)
r : v veristic constraint; X isv R; R is the verity distribution of X (Zadeh;

1999)
r : p probabilistic constraint; X isp R; R is the probability distribution

of X
r : pv probability-value constraint; X ispv R; X is the probability of a fuzzy

event (Zadeh, 1968) and R is its value
r : rs random set constraint; X isrs R;R is the fuzzy-set-valued probability

distribution of X
r : fg fuzzy graph constraint; X isfg R; X is a function and R is its fuzzy

graph
r : u usuality constraint; X isu R; means: usually (X is R).

As an illustration, the constraint

Carol is young

in which young is a fuzzy set with a membership function such as shown in Fig. 10,
is a possibilistic constraint on the variable X : Age(Carol). This constraint de*nes the
possibility distribution of X through the relation

Poss{X = u}= �young(u);

where u is a numerical value of Age; �young is the membership function of young; and
Poss{X = u} is the possibility that Carol’s age is u.
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Fig. 11. Membership function of likely (context-dependent).

The veristic constraint

X isv R (2.2)

means that the verity (truth value) of the proposition {X = u} is equal to the value of
the verity distribution R at u. For example, in the proposition “Alan is half German,
quarter French and quarter Italian”, the verity of the proposition “Alan is German” is
0.5. It should be noted that the numbers 0.5 and 0.25 are not probabilities.
The probabilistic constraint

X isp N (m;  2) (2.3)

means that X is a normally distributed random variable with mean m and variance  2.
The proposition

p: it is likely that Carol is young (2.4)

may be expressed as the probability-value constraint

Prob{Age(Carol) is young} is likely: (2.5)

In this expression, the constrained variable is X : Prob{Age(Carol) is young} and the
constraint

X is likely (2.6)

is a possibilistic constraint in which likely is a fuzzy probability whose membership
function is shown in Fig. 11.
In the random-set constraint, X is a fuzzy-set-valued random variable. Assuming that

the values of X are fuzzy sets {Ai; i=1; : : : ; n} with respective probabilities p1; : : : ; pn,
the random-set constraint on X is expressed symbolically as

X isrs (p1\A1 + · · ·+ pn\An): (2.7)

It should be noted that a random-set constraint may be viewed as a combination of
(a) a probabilistic constraint, expressed as

X isp (p1\u1 + · · ·+ pn\un); ui ∈U (2.8)
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Fig. 12. Fuzzy-graph constraint. f∗ is a fuzzy graph which is an approximate representation of f.

and a possibilistic constraint expressed as

(X; Y ) is R; (2.9)

where R is a fuzzy relation de*ned on U ×V , with membership function �R :U ×V →
[0; 1].
If Ai is a section of R, de*ned as in Zadeh (1997) by

�Ai(v)= �R(ui; v); (2.10)

then the constraint on Y is a random-set constraint expressed as

Y isrs (p1\A1 + · · ·+ pn\An): (2.11)

Another point that should be noted is that the concept of a random-set constraint
is closely related to the Dempster–Shafer theory of evidence (Dempster, 1967; Shafer,
1976) in which the focal sets are allowed to be fuzzy sets (Zadeh, 1979).
In the fuzzy-graph constraint

X isfg R; (2.12)

the constrained variable, X , is a function, f, and R is a fuzzy graph (Zadeh, 1997)
which plays the role of a possibility distribution of X . More speci*cally, if f :U×V →
[0; 1] and Ai; i=1; : : : ; m and Bj; j=1; : : : ; n, are, respectively, fuzzy granules in U
and V (Fig. 12), then the fuzzy graph of f is the disjunction of cartesian products
(granules) Ui × Vj, expressed as

f∗=
m;n∑

i=1; j=1
Ui × Vj; (2.13)

with the understanding that the symbol
∑
should be interpreted as the union rather

than as an arithmetic sum, and Ui and Vj take values in the sets {A1; : : : ; Am} and
{B1; : : : ; Bn}, respectively.
A fuzzy graph of f may be viewed as an approximate representation of f. Usually,

the granules Ai and Bj play the role of values of linguistic variables. Thus, in the case
of the function shown in Fig. 7, its fuzzy graph may be expressed as

f∗= small × small + medium× large + large × small : (2.14)
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Equivalently, if f is written as Y =f(X ), then f∗ may be expressed as the rule-set

f∗ : if X is small then Y is small ;

if X is medium then Y is large;

if X is large then Y is small : (2.15)

This rule-set may be interpreted as a description—in a natural language—of a
perception of f.
The usuality constraint is a special case of the probability-value constraint. Thus,

X isu A (2.16)

should be interpreted as an abbreviation of

usually (X is A); (2.17)

which in turn may be interpreted as

Prob{X is A} is usually; (2.18)

with usually playing the role of a fuzzy probability which is close to 1. In this sense, A
is a usual value of X . More generally, A is a usual value of X if the fuzzy probability
of the fuzzy event {X is A} is close to one and A has high speci*city, that is, has
a tight possibility distribution, with tightness being a context-dependent characteristic
of a fuzzy set. It is important to note that, unlike the concept of the expected value,
the usual value of a random variable is not uniquely determined by its probability
distribution. What this means is that the usual value depends on the calibration of the
context-dependent natural language predicates “close to one” and “high speci*city”.
The diFerence between the concepts of the expected and usual values goes to the

heart of the diFerence between precise and imprecise probability theories. The expected
value is precisely de*ned and unique. The usual value is context-dependent and hence
is not unique. However, its de*nition is precise if the natural language predicates which
occur in its de*nition are de*ned precisely by their membership functions. In this sense,
the concept of the usual value has a Uexibility that the expected value does not have.
Furthermore, it may be argued that the concept of the usual value is closer to our
intuitive perception of “expected value” than the concept of the expected value as it
is de*ned in PT.
In the foregoing discussion, we have focused our attention on unconditional general-

ized constraints. More generally, a generalized constraint may be conditional, in which
case it is expressed in a generic form as an if–then rule

if X isr R then Y iss S (2.19)

or, equivalently, as

Y iss S if X isr R: (2.20)

Furthermore, a generalized constraint may be exception-quali*ed, in which case it is
expressed as

X isr R unless Y iss S: (2.21)
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A generalized rule-set is a collection of generalized if–then rules which collectively
serve as an approximate representation of a function or a relation. Equivalently, a
generalized rule-set may be viewed as a description of a perception of a function or a
relation.
As an illustration, consider a function, f : (U×V )→ [0; 1], expressed as Y =f(X ),

where U and V are the domains of X and Y , respectively. Assume that U and V are
granulated, with the granules of U and V denoted, respectively, as Ai; i=1; : : : ; m, and
Bj; j=1; : : : ; n. Then, a generic form of a generalized rule set may be expressed as

f∗: {if X isr Ui then Y iss Vj} i=1; : : : ; m; j=1; : : : ; n; (2.22)

where Ui and Vj take values in the sets {A1; : : : ; Am} and {B1; : : : ; Bn}, respectively. In
this expression, f∗ represents a fuzzy graph of f.
A concept which plays a key role in the computational theory of perceptions is

that of the Generalized Constraint Language, GCL (Zadeh, 1999). Informally, GCL
is a meaning-representation language in which the principal semantic elements are
generalized constraints. The use of generalized constraints as its semantic elements
makes a GCL a far more expressive language than conventional meaning-representation
languages based on predicate logic.

3. Meaning-representation: constraint-centered semantics of natural languages

In perception-based probability theory, perceptions—and, in particular, perceptions
of likelihood, dependency, count and variations in time and space—are described by
propositions drawn from a natural language. To mechanize reasoning with perceptions,
it is necessary to have a method of representing the meaning of propositions in a
way that lends itself to computation. In the computational theory of perceptions, a
system that is used for this purpose is called the constraint-centered semantics of natural
language (CSNL) (Zadeh, 1999).
Meaning-representation is a central part of every logical system. Why, then, is it

necessary to introduce a system that is signi*cantly diFerent from the many meaning-
representation methods that are in use? The reason has to do with the intrinsic impre-
cision of perceptions and, more particularly, with their f-granularity. It is this charac-
teristic of perceptions that puts them well beyond the expressive power of conventional
meaning-representation methods, most of which are based on predicate logic.
To illustrate, consider the following simple perceptions:

• Ann is much younger than Mary.
• A box contains black and white balls of various sizes. Most are large. Most of the
large balls are black.

• Usually it is rather cold in San Francisco during the summer.
• It is very unlikely that there will be a signi*cant increase in the price of oil in the
near future.



L.A. Zadeh / Journal of Statistical Planning and Inference 105 (2002) 233–264 249

Conventional meaning-representation methods do not have the capability to represent
the meaning of such perceptions in a form that lends itself to computation.
A key idea which diFerentiates CSNL from conventional methods is that the meaning

of a proposition, p, drawn from a natural language, is represented as a generalized
constraint, with the understanding that the constrained variable and the constraining
relation are, in general, implicit rather than explicit in p. For example, in the proposition

p: it is likely that Kate is young;

the constraint is possibilistic; the constrained variable is the probability that Kate is
young; and the constraining relation is likely.
The principal ideas and assumptions which underlie CSNL may be summarized as

follows:

1. Perceptions are described by propositions drawn from a natural language.
2. A proposition, p, may be viewed as an answer to a question.
In general, the question is implicit and not unique. For example, the proposition
“Carol is young” may be viewed as an answer to the question: “How old is Carol”,
or as the answer to “Who is young?”

3. A proposition is a carrier of information.
4. The meaning of a proposition, p, is represented as a generalized constraint which
de*nes the information conveyed by p.

5. Meaning-representation is viewed as translation from a language into the GCL.

In CSNL, translation of a proposition, p, into GCL is equated to explicitation of the
generalized constraint which represents the meaning of p. In symbols

p
translation
explicitation

X isr R: (3.1)

The right-hand member of this relation is referred to as a canonical form of p, written
as CF(p). Thus, the canonical form of p places in evidence (a) the constrained variable
which, in general, is implicit in p; (b) the constraining relation, R; and (c) the copula
variable r which de*nes the way in which R constrains X .
The canonical form of a question, q, may be expressed as

CF(q): X isr ?R (3.2)

and read as “What is the generalized value of X ?”
Similarly, the canonical form of p, viewed as an answer to q, is expressed as

CF(p): X isr R (3.3)

and reads “The generalized value of X isr R”.
As a simple illustration, if the question is “How old is Carol?”, its canonical

form is

CF(q): Age(Carol) is ?R: (3.4)
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Correspondingly, the canonical form of

p: Carol is young (3.5)

is

CF(p): Age(Carol) is young: (3.6)

If the answer to the question is

p: it is likely that Carol is young (3.7)

then

CF(p): Prob{Age(Carol) is young} is likely: (3.8)

More explicitly, if Age(Carol) is a random variable with probability density g, then
the probability measure (Zadeh, 1968) of the fuzzy event “Carol is young” may be
expressed as∫ 120

0
�young(u)g(u) du; (3.9)

where �young is the membership function of young. Thus, in this interpretation the con-
strained variable is the probability density g, and, as will be seen later, the membership
function of the constraining relation is given by

�R(g)= �likely

(∫ 120

0
�young(u)g(u) du

)
: (3.10)

A concept which plays an important role in CSNL is that of cardinality, that is, the
count of elements in a fuzzy set (Zadeh, 1983; Ralescu, 1995; Hajek, 1998). Basically,
there are two ways in which cardinality can be de*ned: (a) crisp cardinality and
(b) fuzzy cardinality (Zadeh, 1983; Ralescu et al., 1995; Ralescu, 1995). In the case
of (a), the count of elements in a fuzzy set is a crisp number; in the case of (b) it is
a fuzzy number. For our purposes, it will suJce to restrict our attention to the case
where a fuzzy set is de*ned on a *nite set and is associated with a crisp count of its
elements.
More speci*cally, consider a fuzzy set A de*ned on a *nite set U = {u1; : : : ; un}

through its membership function �A :U → [0; 1]. The sigma-count of A is de*ned as

∑
Count(A)=

n∑
i=1

�A(ui): (3.11)

If A and B are fuzzy sets de*ned on U , then the relative sigma-count,
∑

Count(A=B),
is de*ned as

∑
Count(A=B)=

∑n
i=1 �A(ui) ∧ �B(ui)∑n

i=1 �B(ui)
; (3.12)

where ∧=min, and summations are arithmetic.
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As a simple illustration, consider the perception

p: most Swedes are tall:

In this case, the canonical form of p may be expressed as

CF(p):
∑

Count(tall : Swedes=Swedes) is
1
n

n∑
i=1

�tall : Swede(ui); (3.13)

where ui is the height of the ith Swede and �tall : Swede(ui) is the grade of membership
of the ith Swede in the fuzzy set of tall Swedes.
In a general setting, how can a given proposition, p, be expressed in its canonical

form? A framework for translation of propositions drawn from a natural language
into GCL is partially provided by the conceptual structure of test-score semantics
(Zadeh, 1981). In this semantics, X and R are de*ned by procedures which act on an
explanatory database, ED, with ED playing the role of a collection of possible worlds
in possible world semantics (Cresswell, 1973). As a very simple illustration, consider
the proposition (Zadeh, 1999)

p: Carol lives in a small city near San Francisco

and assume that the explanatory database consists of three relations:

ED= POPULATION [Name;Residence]

+ SMALL[City; �]

+NEAR[City1;City2; �]: (3.14)

In this case,

X =Residence(Carol)=Residence POPULATION [Name=Carol]; (3.15)

R= SMALL[City; �] ∩City1 NEAR[City2= San Francisco]: (3.16)

In R, the *rst constituent is the fuzzy set of small cities; the second constituent is the
fuzzy set of cities which are near San Francisco; and ∩ denotes the intersection of
these sets. Left subscripts denote projections, as de*ned in Zadeh (1981).
There are many issues relating to meaning-representation of perception-based infor-

mation which go beyond the scope of the present paper. The brief outline presented in
this section is suJcient for our purposes. In the following section, our attention will be
focused on the basic problem of reasoning based on generalized constraint propagation.
The method which will be outlined contains as a special case a basic idea suggested
in an early paper of Good (1962). A related idea was employed in Zadeh (1955).

4. Reasoning based on propagation of generalized constraints

One of the basic problems in probability theory is that of computation of the probabil-
ity of a given event from a body of knowledge which consists of information about the
relevant functions, relations, counts, dependencies and probabilities of related events.
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As was alluded to earlier, in many cases the available information is a mixture of
measurements and perceptions. Standard probability theory provides a vast array of
tools for dealing with measurement-based information. But what is not provided is a
machinery for dealing with information which is perception-based. This limitation of PT
is exempli*ed by the following elementary problems—problems in which information
is perception-based.

1. X is a normally distributed random variable with small mean and small variance.
Y is much larger than X .
What is the probability that Y is neither small nor large?

2. Most Swedes are tall.
Most Swedes are blond.
What is the probability that a Swede picked at random is tall and blond?

3. Consider a perception-valued times series

T = {t1; t2; t3; : : :};
in which the ti’s are perceptions of, say temperature, e.g., warm, very warm, cold,: : : :
For simplicity, assume that the ti’s are independent and identically distributed. Fur-
thermore, assume that the ti’s range over a *nite set of linguistic values, A1; A2; : : : ; An,
with respective probabilities P1; : : : ; Pn. What is the average value of T?

To be able to compute with perceptions, it is necessary, as was stressed already,
to have a mechanism for representing their meaning in a form that lends itself to
computation. In the computational theory of perceptions, this purpose is served by
the constraint-centered semantics of natural languages. Through the use of CSNL,
propositions drawn from a natural language are translated into the GCL.
The second stage of computation involves generalized constraint propagation from

premises to conclusions. Restricted versions of constraint propagation are considered
in Zadeh (1979), Bowen et al. (1992), Dubois et al. (1993), Katai et al. (1992) and
Yager (1989). The main steps in generalized constraint propagation are summarized in
the following. As a preliminary, a simple example is analyzed.
Assume that the premises consist of two perceptions:

p1: most Swedes are tall;
p2: most Swedes are blond:

and the question, q, is: What fraction of Swedes are tall and blond? This fraction, then,
will be the linguistic value of the probability that a Swede picked at random is tall
and blond.
To answer the question, we *rst convert p1; p2 and q into their canonical forms:

CF(p1):
∑

Count(tall :Swedes=Swedes) is most; (4.1)

CF(p2):
∑

Count(blond :Swedes=Swedes) is most; (4.2)

CF(q):
∑

Count(tall ∩ blond :Swedes=Swedes) is ?Q; (4.3)

where Q is the desired fraction.
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Next, we employ the identity (Zadeh, 1983)∑
Count(A ∩ B) +

∑
Count(A ∪ B)=

∑
Count(A) +

∑
Count(B); (4.4)

in which A and B are arbitrary fuzzy sets. From this identity, we can readily deduce
that ∑

Count(A) +
∑

Count(B)− 16∑Count(A ∩ B)

6min(
∑

Count(A);
∑

Count(B)) ; (4.5)

with the understanding that the lower bound is constrained to lie in the interval [0; 1].
It should be noted that the identity in question is a generalization of the basic identity
for probability measures

P(A ∩ B) + P(A ∪ B)=P(A) + P(B): (4.6)

Using the information conveyed by canonical forms, we obtain the bounds

2most − 16∑Count(tall ∩ blond :Swedes=Swedes)6most; (4.7)

which may be expressed equivalently as∑
Count(tall ∩ blond :Swedes=Swedes) is 6most ∩¿ (2most − 1): (4.8)

Now

6most= [0; 1] (4.9)

and

¿ (2most − 1)=2most − 1; (4.10)

in virtue of monotonicity of most (Zadeh, 1999).
Consequently,∑

Count(tall ∩ blond :Swedes=Swedes) is 2most − 1 (4.11)

and hence the answer to the question is

a: (2most − 1) Swedes are tall and blond : (4.12)

In a more general setting, the principal elements of the reasoning process are the
following.

1. Question (query), q. The canonical form of q is assumed to be

X isr ?Q: (4.13)

2. Premises. The collection of premises expressed in a natural language constitutes the
initial data set (IDS).

3. Additional premises which are needed to arrive at an answer to q. These premises
constitute the external data set (EDS). Addition of EDS to IDS results in what is
referred to as the augmented data set (IDS+).
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Example. Assume that the initial data set consists of the propositions

p1: Carol lives near Berkeley;

p2: Pat lives near Palo Alto:

Suppose that the question is: How far is Carol from Pat? The external data set in this
case consists of the proposition

distance between Berkeley and Palo Alto is approximately 45 miles: (4.14)

4. Through the use of CSNL, propositions in IDS+ are translated into the GCL. The
resulting collection of generalized constraints is referred to as the augmented initial
constraint set ICS+.

5. With the generalized constraints in ICS+ serving as antecedent constraints, the rules
which govern generalized constraint propagation in CTP are applied to ICS+, with
the goal of deducing a set of generalized constraints, referred to as the termi-
nal constraint set, which collectively provide the information which is needed to
compute q.

The rules governing generalized constraint propagation in the computational theory of
perceptions coincide with the rules of inference in fuzzy logic (Zadeh, 1999, 2000). In
general, the chains of inference in CTP are short because of the intrinsic imprecision
of perceptions. The shortness of chains of inference greatly simpli*es what would
otherwise be a complex problem, namely, the problem of selection of rules which
should be applied in succession to arrive at the terminal constraint set. This basic
problem plays a central role in theorem proving in the context of standard logical
systems (Fikes and Nilsson, 1971).

6. The generalized constraints in the terminal constraint set are re-translated into a
natural language, leading to the terminal data set. This set serves as the answer to
the posed question. The process of re-translation is referred to as linguistic approx-
imation (Pedrycz and Gomide, 1998). Re-translation will not be addressed in this
paper.

The basic rules which govern generalized constraint propagation are of the general
form

p1
p2
:
:
:
pk

pk+1;

(4.15)

where p1; : : : ; pk are the premises and pk+1 is the conclusion. Generally, k =1 or 2.
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In a generic form, the basic constraint-propagation rules in CTP are expressed as
follows (Zadeh, 1999):
1. Conjunctive rule 1:

X isr R
X iss S
X ist T:

(4.16)

The diFerent symbols r; s; t in constraint copulas signify that the constraints need not
be of the same type.
2. Conjunctive rule 2:

X isr R
Y iss S

(X; Y ) ist T:
(4.17)

3. Disjunctive rule 1:

or
X isr R
X iss S
X ist T:

(4.18)

4. Disjunctive rule 2:

or
X isr R
Y iss S

(X; Y ) ist T:
(4.19)

5. Projective rule:

(X; Y ) isr R
Y iss S:

(4.20)

6. Surjective rule:

X isr R
(X; Y ) iss S:

(4.21)

7. Inversive rule:

f(X ) isr R
X iss S;

(4.22)

where f(X ) is a function of X .
From these basic rules the following frequently used rules may be derived:
8. Compositional rule:

X isr R
(X; Y ) iss S
Y ist T:

(4.23)
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Fig. 13. Generalized extension principle. Constraint on f(X ) induces a constraint on g(X ).

9. Generalized extension principle:

f(X ) isr R
g(X ) iss S;

(4.24)

where f and g are given functions. The generalized extension principle is the principal
rule of inference in fuzzy logic.
The generic rules lead to specialized rules for various types of constraints. In par-

ticular, for possibilistic constraints we have, for example (Pedrycz and Gomide, 1998)
Conjunctive rule 1:

X is R
X is S
X is R ∩ S;

(4.25)

where R and S are fuzzy sets and R ∩ S is their intersection.
Compositional rule:

X is R
(X; Y ) is S
Y is R • S;

(4.26)

where R•S is the composition of R and S. If conjunction and disjunction are identi*ed
with min and max, respectively, then

�R•S(v)=maxu(min(�R(u); �S(u; v))); (4.27)

where �R and �S are the membership functions of R and S.
Generalized extension principle (Fig. 13):

f(X ) is R
g(X ) is g(f−1(R));

(4.28)
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where

�g(f−1(R))(v)= max
u|v=g(u)

�R(f(u)): (4.29)

Compositional rule for probabilistic constraints (Bayes’ rule):

X isp R
Y |X isp S
Y isp R • S;

(4.30)

where Y |X denotes Y conditioned on X , and R•S is the composition of the probability
distributions R and S.
Compositional rule for probabilistic and possibilistic constraints (random-set

constraint):

X isp R
(X; Y ) is S
Y isrs T;

(4.31)

where T is a random set. As was stated at an earlier point, if X takes values in a *nite
set {u1; : : : ; un} with respective probabilities p1; : : : ; pn, then the constraint X isp R
may be expressed compactly as

X isp
(

n∑
i=1

pi\ui
)
: (4.32)

When X takes a value ui, the possibilistic constraint (X; Y ) is S induces a constraint
on Y which is given by

Y is Si; (4.33)

where Si is a fuzzy set de*ned by

Si= S(ui; Y ): (4.34)

From this it follows that when X takes the values u1; : : : ; un with respective probabilities
p1; : : : ; pn, the fuzzy-set-valued probability distribution of Y may be expressed as

Y isp
(

n∑
i=1

pi\Si
)
: (4.35)

This fuzzy-set-valued probability distribution de*nes the random set T in the random-set
constraint

Y isrs T: (4.36)

Conjunctive rule for random set constraints: For the special case in which R and S
in the generic conjunctive rule are random fuzzy sets as de*ned above, the rule assumes
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a more speci*c form:

X isrs
m∑
i=1

pi\Ri

X isrs
n∑

j=1
qj\Sj

X isrs
m;n∑

i=1; j=1
piqj\(Ri ∩ Sj):

(4.37)

In this rule, Ri and Si are assumed to be fuzzy sets. When Ri and Si are crisp sets,
the rule reduces to the Dempster rule of combination of evidence (Dempster, 1967;
Shafer, 1976). An extension of Dempster’s rule to fuzzy sets was described in a paper
dealing with fuzzy information granularity (Zadeh, 1979). It should be noted that in
(4.37) the right-hand member is not normalized, as it is in the Dempster–Shafer theory
(Strat, 1992).
The few simple examples discussed above demonstrate that there are many ways in

which generic rules can be specialized, with each specialization leading to a distinct
theory in its own right. For example, possibilistic constraints lead to possibility theory
(Zadeh, 1978; Dubois and Prade, 1988); probabilistic constraints lead to probability
theory; and random-set constraints lead to the Dempster–Shafer theory of evidence.
In combination, these and other specialized rules of generalized constraint propagation
provide the machinery that is needed for a mechanization of reasoning processes in the
logic of perceptions and, more particularly, in a perception-based theory of probabilistic
reasoning with imprecise probabilities.
As an illustration, let us consider a simple problem that was stated earlier—a typical

problem which arises in situations in which the decision-relevant information is
perception-based. Given the perception: Usually Robert returns from work at about
6 p.m.; the question is: What is the probability that he is home at 6:30 p.m.?
An applicable constraint-propagation rule in this case is the generalized extension

principle. More speci*cally, let g denote the probability density of the time at which
Robert returns from work. The initial data set is the proposition

p: usually Robert returns from work at about 6 p:m:

This proposition may be expressed as the usuality constraint

X isu 6∗; (4.38)

where 6∗ is an abbreviation for “about 6 p.m.”, and X is the time at which Robert
returns from work. Equivalently, the constraint in question may be expressed as

p: Prob{X is 6∗} is usually: (4.39)

Using the de*nition of the probability measure of a fuzzy event (Zadeh, 1968), the
constraint on g may be expressed as∫ 12

0
g(u)�6∗(u) du is usually; (4.40)

where �6∗(u) is the membership function of 6∗ (Fig. 14).
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Fig. 14. Application of the generalized extension principle. P is the probability that Robert is at home at
6:30 p.m.

Let P(g) denote the probability that Robert is at home at 6:30 p.m. This probability
would be a number if g were known. In our case, information about g is conveyed by
the given usuality constraint. This constraint de*nes the possibility distribution of g as
a functional:

�(g)= �usually

(∫ 12

0
g(u)�6∗(u) du

)
: (4.41)

In terms of g, the probability that Robert is home at 6:30 p.m. may be written as a
functional:

P(g)=
∫ 6:30

0
g(u) du: (4.42)

The generalized extension principle reduces computation of the possibility distribu-
tion of P to the solution of the variational problem

�P(v)=maxg

(
�usually

(∫ 12

0
g(u)�6∗(u) du

))
(4.43)

subject to

v=
∫ 6:30

0
g(u) du:

The reduction of inference to solution of constrained variational problems is a basic
feature of fuzzy logic (Zadeh, 1979).
Solution of variational problems of form (4.43) may be simpli*ed by a discretization

of g. Thus, if u is assumed to take values in a *nite set U = {u1; : : : ; un}, and the
respective probabilities are p1; : : : ; pn, then the variational problem (4.43) reduces to
the nonlinear program

�P(v)=maxP

(
�usually

(
n∑
i=1

pi�6∗(ui)
))

(4.44)
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subject to

v=
m∑
j=1

Pj;

06Pj6 1;

n∑
i=1

Pi=1;

where p=(p1; : : : ; pn), and m is such that um=6:30.
In general, probabilities serve as a basis for making a rational decision. As an

illustration, assume that I want to call Robert at home at 6:30 p.m. and have to decide
on whether I should call him person-to-person or station-to-station. Assume that we
have solved the variational problem (4.43) and have in hand the value of P de*ned by
its membership function �P(v). Furthermore, assume that the costs of person-to-person
and station-to-station calls are a and b, respectively.
Then the expected cost of a person-to-person call is

A= aP;

while that of a station-to-station call is

B= b;

where A is a fuzzy number de*ned by (Kaufmann and Gupta, 1985)

�A(v)= a�P(v):

More generally, if X is a random variable taking values in the set of numbers
U = {a1; : : : ; an} with respective imprecise (fuzzy) probabilities P1; : : : ; Pn, then the
expected value of X is the fuzzy number (Zadeh, 1975; Kruse and Meyer, 1987)

E(X )=
n∑
i=1

aiPi: (4.45)

The membership function of E(X ) may be computed through the use of fuzzy arith-
metic (Kaufmann and Gupta, 1985; Mares, 1994). More speci*cally, if the membership
functions of Pi are �i, then the membership function of E(X ) is given by the solution
of the variational problem

�E(X )(v)=maxu1 ;:::;un (�P1 (u1) ∧ · · · ∧ �Pn(un)) (4.46)

subject to the constraints

06 ui6 1;

n∑
i=1

ui=1;

v=
n∑
i=1

aiui:



L.A. Zadeh / Journal of Statistical Planning and Inference 105 (2002) 233–264 261

Returning to our discussion of the Robert example, if we employ a generalized
version of the principle of maximization of expected utility to decide on how to place
the call, then the problem reduces to that of ranking the fuzzy numbers A and B.
The problem of ranking of fuzzy numbers has received considerable attention in the
literature (see Pedrycz and Gomide, 1998), and a number of ranking algorithms have
been described.
Our discussion of the Robert example is aimed at highlighting some of the princi-

pal facets of the perception-based approach to reasoning with imprecise probabilities.
The key point is that reasoning with perception-based information may be reduced to
solution of variational problems. In general, the problems are computationally inten-
sive, even for simple examples, but well within the capabilities of desktop computers.
Eventually, novel methods of computation involving neural computing, evolutionary
computing, molecular computing or quantum computing may turn out to be eFective in
computing with imprecise probabilities in the context of perception-based information.
As a further illustration of reasoning with perception-based information, it is instruc-

tive to consider a perception-based version of a basic problem in probability theory.
Let X and Y be random variables in U and V , respectively. Let f be a mapping

from U to V . The basic problem is: Given the probability distribution of X; P(X ), what
is the probability distribution of Y ?
In the perception-based version of this problem it is assumed that what we know are

perceptions of f and P(X ), denoted as f∗ and P∗(X ), respectively. More speci*cally,
we assume that X and f are granular (linguistic) variables and f∗ is described by a
collection of granular (linguistic) if–then rules:

f∗: {if X is Ai then Y is Bi}; i=1; : : : ; m; (4.47)

where Ai and Bi are granules of X and Y , respectively (Fig. 12). Equivalently, f∗

may be expressed as a fuzzy graph

f∗=
m∑
i=1

Ai × Bi; (4.48)

where Ai × Bi is a cartesian granule in U × V . Furthermore, we assume that the
perception of P(X ) is described as

P∗(X ) is
n∑

j=1
pj\Cj; (4.49)

where the Cj are granules of U , and

pj =Prob{X is Cj}: (4.50)

Now, let f∗(Cj) denote the image of Cj. Then, application of the extension principle
yields

f∗(Cj)=
m∑
i=1

mij ∧ Bi; (4.51)

where the matching coeJcient, mij, is given by

mij =sup(Ai ∩ Cj); (4.52)
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with the understanding that

sup(Ai ∩ Cj)= supu (�Ai(u) ∧ �Cj (u)); (4.53)

where u∈U and �Ai and �Cj are the membership functions of Ai and Cj, respectively.
In terms of f∗(Cj), the probability distribution of Y may be expressed as

P∗(Y ) is
n∑

j=1
pj\f∗(Cj) (4.54)

or, more explicitly, as

P∗(Y ) is
n∑

j=1
pj

∖(∑
i
mij ∧ Bi

)
: (4.55)

What these examples show is that computation with perception-based functions and
probability distribution is both more general and more complex than computation with
their measurement-based counterparts.

5. Concluding remarks

The perception-based theory of probabilistic reasoning which is outlined in this paper
may be viewed as an attempt to add to probability theory a signi*cant capability—a
capability to operate on information which is perception-based. It is this capability that
makes it possible for humans to perform a wide variety of physical and mental tasks
without any measurements and any computations.
Perceptions are intrinsically imprecise, reUecting a fundamental limitation on the

cognitive ability of humans to resolve detail and store information. Imprecision of per-
ceptions places them well beyond the scope of existing meaning-representation and
deductive systems. In this paper, a recently developed computational theory of percep-
tions is used for this purpose. Applicability of this theory depends in an essential way
on the ability of modern computers to perform complex computations at a low cost
and high reliability.
Natural languages may be viewed as systems for describing perceptions. Thus, to

be able to operate on perceptions, it is necessary to have a means of representing
the meaning of propositions drawn from a natural language in a form that lends itself
to computation. In this paper, the so-called constraint-centered semantics of natural
languages serves this purpose.
A conclusion which emerges from these observations is that to enable probability

theory to deal with perceptions, it is necessary to add to it concepts and techniques
drawn from semantics of natural languages. Without these concepts and techniques,
there are many situations in which probability theory cannot answer questions that arise
when everyday decisions have to be made on the basis of perception-based information.
Examples of such questions are given in this paper.
A related point is that, in perception-based theory of probabilistic reasoning, im-

precision can occur on may diFerent levels—and not just on the level of imprecise
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probabilities. In particular, imprecision can occur on the level of events, counts and
relations. More basically, it can occur on the level of de*nition of such basic concepts
as random variable, causality, independence and stationarity. The concept of precisiated
natural language may suggest a way of generalizing these and related concepts in a
way that would enhance their expressiveness and operationality.
The conUuence of probability theory and the computational theory of perceptions

opens the door to a radical enlargement of the role of natural languages in probability
theory. The theory outlined in this paper is merely a *rst step in this direction. Many
further steps will have to be taken to develop the theory more fully. This will happen
because it is becoming increasingly clear that real-world applications of probability
theory require the capability to process perception-based information as a basis for
rational decisions in an environment of imprecision, uncertainty and partial truth.
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